Boundary Element Method formulation of Normal and Tangential Contact with Coulomb Friction

Son Pham-Ba, Lucas Frérot, Tobias Brink, Jean-François Molinari \blacktriangleright son.phamba@epfl.ch

IMS. Laboratoire de Simulation en Mécanique des Solides Computational Solid Mechanics Laboratory

Question: Surfaces are rough. Only some asperities come into contact. We want to assess how asperity interactions alter the debris formation process during adhesive wear [1]. This poster shows our initial steps for validating a model and numerical method for adhesive frictional contact of rough surfaces.

Approach: BEM is much more efficient than FEM to solve contact between rough surfaces because only the surfaces have to be discretized. A BEM formulation with Coulomb friction has been derived and implemented.

Introduction

Contact between a rigid rough surface and an elastic flat surface is considered. It is equivalent to the contact between two elastic rough surfaces with different properties under some assumptions [2].

Effective Young modulus:

1 E[∗] = $1 - \nu_1^2$ 1 E_1 $+$ $1 - \nu_2^2$ 2 $E₂$

Comparison with Mindlin theory of Hertz contact with Coulomb friction in uncoupled case $(\nu = 0.5)$ [2]. ₩

Regions: • contact: $p_N(\mathbf{x}) > 0$ • stick: $\|\vec{p}_{T}(\mathbf{x})\| = \mu p_{N}(\mathbf{x})$ • slip: $\|\vec{p}_{\tau}(\mathbf{x})\| \leq \mu p_{N}(\mathbf{x})$

Model

- Minimization of potential energy
- Coulomb friction law: $\|\vec{p}_{\tau}(\mathbf{x})\| \leq \mu p_N(\mathbf{x})$

Solving

Johnson's assumption

Admissible size of contact zone (with $n = 243$) The obtained solution converges toward the theoretical solution if: • the contact zone is discretized with enough grid points, $\frac{L}{n} \leq \frac{2a}{10}$ $\frac{2a}{10}$, • the contact zone is small enough to not have boundary effects, $2a \leq \frac{L}{10}$ 10

Formulation

10 100 Number of grid points in diameter 2a*n/L [-]

- Conjugate gradient method [3]
- FFT-based: implies periodic boundary conditions, which are suitable for rough surfaces

Validation

Applications: We have studied the contact asperity patches. Under an increasing normal load, these patches are growing and merging. Adding a tangential load creates stress concentrations only around certain patches and localized slip [4]. The statistics of these contact patches are under investigation.

Limitation: Coulomb friction has no meaning at atomistic scale. We may switch to tangential adhesion formulation and couple it with normal adhesion (consistent with atomic scale interactions).

A more realistic example: rough spherical contact

Parameters:

Material: $E=1\cdot 10^6$ Pa, $\nu=0.3, \, \mu=0.5$ Rough surface [5]: $k_l = k_r = 4$, $k_{\mathsf{s}} = 64$, $H = 0.8, \ \sqrt{\langle |\nabla h|^2 \rangle} = 8 \cdot 10^{-8} \text{m}$ Hertz contact: $R = 0.01$ m, $p_{N,0} = 2 \cdot 10^3$ Pa Discretization: $L = 0.001$ m, $n = 243$

Conclusion

References

[1] Lucas Frérot, Ramin Aghababaei, and Jean-François Molinari. A mechanistic understanding of the wear coefficient: From single to multiple asperities contact. Journal of the Mechanics and Physics of Solids, 114:172 - 184

[2] K. L. Johnson. Contact Mechanics. Cambridge University Press, 1985.

[3] Valentine Rey, Guillaume Anciaux, and Jean-François Molinari. Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution, Jul 2017.

[4] R. Sahli, G. Pallares, C. Ducottet, I. E. Ben Ali, S. Al Akhrass, M. Guibert, and J. Scheibert. Evolution of real contact area under shear and the value of static friction of soft materials. Proceedings of the National [5] Vladislav A. Yastrebov, Guillaume Anciaux, and Jean-François Molinari. From infinitesimal to full contact between rough surfaces: Evolution of the contact area. International Journal of Solids and Structures, 52:83 - 1