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Introduction

Question: Surfaces are rough. Only some asperities come into contact. We want to

assess how asperity interactions alter the debris formation process during adhesive wear [1].

This poster shows our initial steps for validating a model and numerical method for adhesive

frictional contact of rough surfaces.

Approach: BEM is much more e�cient than FEM to solve contact between rough surfaces

because only the surfaces have to be discretized. A BEM formulation with Coulomb friction

has been derived and implemented.

Model

Johnson's assumption

Contact between a rigid rough surface and an elastic �at surface is considered. It is

equivalent to the contact between two elastic rough surfaces with di�erent properties

under some assumptions [2].

E�ective Young modulus:
1
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Formulation

•Minimization of potential energy

•Coulomb friction law: ‖~pT (x)‖ ≤ µpN(x)

Solving

•Conjugate gradient method [3]

•FFT-based: implies periodic boundary conditions, which

are suitable for rough surfaces

rigid

elastic

pN,0

~pT,0

pN(x)

~pT (x)

Validation

Comparison with Mindlin theory of Hertz contact with Coulomb friction in uncoupled case

(ν = 0.5) [2].
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Regions:
• contact: pN(x) > 0
• stick: ‖~pT (x)‖ = µpN(x)
• slip: ‖~pT (x)‖ ≤ µpN(x)

Convergence with mesh re�nement (with L = 1mm)
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Admissible size of contact zone (with n = 243)

The obtained solution converges toward the theoretical solution if:

• the contact zone is discretized with enough grid points, Ln ≤
2a
10,

• the contact zone is small enough to not have boundary e�ects, 2a ≤ L
10
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A more realistic example: rough spherical contact

Parameters:
Material: E = 1 · 106Pa, ν = 0.3, µ = 0.5
Rough surface [5]: kl = kr = 4, ks = 64, H = 0.8,

√
〈|∇h|2〉 = 8 · 10−8m

Hertz contact: R = 0.01m, pN,0 = 2 · 103Pa
Discretization: L = 0.001m, n = 243

ln(PSD(k))

ln(|k|)
ln(kl) ln(kr)ln(ks)

−2(H + 1)

px = 0 px = 0.8µpN
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Conclusion

Applications: We have studied the contact asperity patches. Under an increasing normal

load, these patches are growing and merging. Adding a tangential load creates stress

concentrations only around certain patches and localized slip [4]. The statistics of these

contact patches are under investigation.

Limitation: Coulomb friction has no meaning at atomistic scale. We may switch to

tangential adhesion formulation and couple it with normal adhesion (consistent with atomic

scale interactions).
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